Researchers entangle ions across a 230-meter quantum network

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams led by Tracy Northup and Ben Lanyon from the University of Innsbruck have entangled two ions over a distance of 230 meters.

The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Trapped ions are one of the leading systems to build quantum computers and other quantum technologies. To link multiple such quantum systems, interfaces are needed through which the quantum information can be transmitted.

In recent years, researchers led by Northup and Lanyon at the University of Innsbruck’s Department of Experimental Physics have developed a method for doing this by trapping atoms in optical cavities such that quantum information can be efficiently transferred to light particles. The light particles can then be sent through optical fibers to connect atoms at different locations.

Now, their teams, together with theorists led by Nicolas Sangouard of the Université Paris-Saclay, have for the first time entangled two trapped ions more than a few meters apart.

Platform for building quantum networks

The two quantum systems were set up in in two laboratories, one in the building that houses the Department of Experimental Physics and one in the building that houses the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

“Until now, trapped ions were only entangled with each other over a few meters in the same laboratory. Those results were also achieved using shared control systems and photons (light particles) with wavelengths that aren’t suitable for traveling over much longer distances,” Lanyon explains.

After years of research and development, the Innsbruck physicists have now managed to entangle two ions across campus. “To do this, we sent individual photons entangled with the ions over a 500-meter fiber optic cable and superimposed them on each other, swapping the entanglement to the two remote ions,” says Northup, describing the experiment. “Our results show that trapped ions are a promising platform for realizing future distributed networks of quantum computers, quantum sensors and atomic clocks.”

Lanyon’s and Northup’s teams are part of the Quantum Internet Alliance, an international project under the European Union’s Quantum Flagship. The latest results have been published in Physical Review Letters.

More information:
V. Krutyanskiy et al, Entanglement of Trapped-Ion Qubits Separated by 230 Meters, Physical Review Letters (2023). DOI: 10.1103/PhysRevLett.130.050803

Provided by
University of Innsbruck

Citation:
Researchers entangle ions across a 230-meter quantum network (2023, February 2)