What is an attosecond? A physical chemist explains the tiny time scale behind Nobel Prize-winning research

A group of three researchers earned the 2023 Nobel Prize in physics for work that has revolutionized how scientists study the electron – by illuminating molecules with attosecond-long flashes of light. But how long is an attosecond, and what can these infinitesimally short pulses tell researchers about the nature of matter?

I first learned of this area of research as a graduate student in physical chemistry. My doctoral adviser’s group had a project dedicated to studying chemical reactions with attosecond pulses. Before understanding why attosecond research resulted in the most prestigious award in the sciences, it helps to understand what an attosecond pulse of light is.

How long is an attosecond?

“Atto” is the scientific notation prefix that represents 10⁻¹⁸, which is a decimal point followed by 17 zeroes and a 1. So a flash of light lasting an attosecond, or 0.000000000000000001 of a second, is an extremely short pulse of light.

In fact, there are approximately as many attoseconds in one second as there are seconds in the age of the universe.

A diagram showing an attosecond, depicted as an orange collection of hexagons, on the left, with the age of the universe, depicted as a dark vacuum on the right, and a heartbeat, depicted as a human heart, in the middle.

An attosecond is incredibly small when compared to a second.
Johan Jarnestad/The Royal Swedish Academy of Sciences, CC BY-NC-ND

Previously, scientists could study the motion of heavier and slower-moving atomic nuclei with femtosecond (10⁻¹⁵) light pulses. One thousand attoseconds are in 1 femtosecond. But researchers couldn’t see movement on the electron scale until they could generate attosecond light pulses – electrons move too fast for scientists to parse exactly what they are up to at the femtosecond level.

Attosecond pulses

The rearrangement of electrons in atoms and molecules guides a lot of processes in physics, and it underlies practically every part of chemistry. Therefore, researchers have put a lot of effort into figuring out how electrons are moving and rearranging.

However, electrons move around very rapidly in physical and chemical processes, making them difficult to study. To investigate these processes, scientists use spectroscopy, a method of examining how matter absorbs or emits light. In order to follow the electrons in real time, researchers need a pulse of light that is shorter than the time it takes for electrons to rearrange.

Pump-probe spectroscopy is a common technique in physics and chemistry and can be performed with attosecond light pulses.

As an analogy, imagine a camera that could only take longer exposures, around 1 second long. Things in motion, like a person running toward the camera or a bird flying across the sky, would appear blurry in the photos taken, and it would be difficult to see exactly what was going on.

Then, imagine you use a camera with a 1 millisecond exposure. Now, motions that were previously smeared out would be nicely resolved into clear and precise snapshots. That’s how using the attosecond scale,…

Access the original article