Your cells constantly generate and conduct electricity that runs through your body to perform various functions. One such example of this bioelectricity is the nerve signals that power thoughts in your brain. Others include the cardiac signals that control the beating of your heart, along with other signals that tell your muscles to contract.
As bioengineers, we became interested in the epithelial cells that make up human skin and the outer layer of people’s intestinal tissues. These cells aren’t known to be able to generate bioelectricity. Textbooks state that they primarily act as a barrier against pathogens and poisons; epithelial cells are thought to do their jobs passively, like how plastic wrapping protects food against spoilage.
To our surprise, however, we found that wounded epithelial cells can propagate electrical signals across dozens of cells that persist for several hours. In this newly published research, we were able to show that even epithelial cells use bioelectricity to coordinate with their neighbors when the emergency of an injury demands it. Understanding this unexpected twist in how the body operates may lead to improved treatments for wounds.
Discovering a new source of bioelectricity
Don’t laugh: Our interest in this topic began with a gut feeling. Think of how your skin heals itself after a scratch. Epithelial cells may look silent and calm, but they’re busy coordinating with each other to extrude damaged cells and replace them with new ones. We thought bioelectric signals might orchestrate this, so our intuition told us to search for them.
Almost all the vendors we contacted to obtain the instrument we needed to test our idea warned us not to try these experiments. Only one company agreed with reluctance. “Your experiment won’t work,” they insisted. If we made the attempt and found nothing worthwhile to study, they feared it would make their product look bad.
But we did our experiments anyway – with tantalizing results.
We grew a layer of epithelial cells on a chip patterned with what’s called a microelectrode array – dozens of tiny electric wires that measure where bioelectric signals appear, how strong the signals are and how fast they travel from spot to spot. Then, we used a laser to zap a wound in one location and searched for electric signals on a different part of the cell layer.
Microelectrode arrays detect electrical signals in cells.
Kwayyy/Wikimedia Commons, CC BY-SA
Several hours of recording confirmed our intuition: When faced with the emergency need to repair themselves, bioelectrical signals appear when epithelial cells need a quick way to communicate over long distances.
We found that wounded epithelial cells can send bioelectric signals to neighboring cells over distances more than 40 times their body length with voltages similar to those of neurons. The shapes of these voltage spikes are also like those of neurons except…