Immune cells can adapt to invading pathogens, deciding whether to fight now or prepare for the next battle

How does your immune system decide between fighting invading pathogens now or preparing to fight them in the future? Turns out, it can change its mind.

Every person has 10 million to 100 million unique T cells that have a critical job in the immune system: patrolling the body for invading pathogens or cancerous cells to eliminate. Each of these T cells has a unique receptor that allows it to recognize foreign proteins on the surface of infected or cancerous cells. When the right T cell encounters the right protein, it rapidly forms many copies of itself to destroy the offending pathogen.

Diagram depicting a helper T cell differentiating into either a memory T cell or an effector T cell after exposure to an antigen

T cells can differentiate into different subtypes of cells after coming into contact with an antigen.
Anatomy & Physiology/SBCCOE, CC BY-NC-SA

Importantly, this process of proliferation gives rise to both short-lived effector T cells that shut down the immediate pathogen attack and long-lived memory T cells that provide protection against future attacks. But how do T cells decide whether to form cells that kill pathogens now or protect against future infections?

We are a team of bioengineers studying how immune cells mature. In our recently published research, we found that having multiple pathways to decide whether to kill pathogens now or prepare for future invaders boosts the immune system’s ability to effectively respond to different types of challenges.

Fight or remember?

To understand when and how T cells decide to become effector cells that kill pathogens or memory cells that prepare for future infections, we took movies of T cells dividing in response to a stimulus mimicking an encounter with a pathogen.

Specifically, we tracked the activity of a gene called T cell factor 1, or TCF1. This gene is essential for the longevity of memory cells. We found that stochastic, or probabilistic, silencing of the TCF1 gene when cells confront invading pathogens and inflammation drives an early decision between whether T cells become effector or memory cells. Exposure to higher levels of pathogens or inflammation increases the probability of forming effector cells.

Microscopy video of T cells dividing, with several losing their bright yellow color

TCF1 (yellow) is randomly silenced as T cells are activated, driving an early bifurcation of effector and memory cells. Counter in hours.
Kathleen Abadie/Kueh Lab

Surprisingly, though, we found that some effector cells that had turned off TCF1 early on were able to turn it back on after clearing the pathogen, later becoming memory cells.

Microscopy video of many moving T cells gradually turning yellow

TCF1 (yellow) can turn back on in T cells that had previously turned it off. Counter in hours.
Kathleen Abadie/Kueh Lab

Through mathematical modeling, we determined that this flexibility in decision making among memory T cells is critical to generating the right number of cells that respond immediately and cells that prepare for the future, appropriate to the severity of the infection.

Understanding immune memory

The proper formation…

Access the original article

Subscribe
Don't miss the best news ! Subscribe to our free newsletter :