To graduate with a science major, college students must complete between 40 and 60 credit hours of science coursework. That means spending around 2,500 hours in the classroom throughout their undergraduate career.
However, research has shown that despite all that effort, most college science courses give students only a fragmented understanding of fundamental scientific concepts. The teaching method reinforces memorization of isolated facts, proceeding from one textbook chapter to the next without necessarily making connections between them, instead of learning how to use the information and connect those facts meaningfully.
The ability to make these connections is important beyond the classroom as well, because it’s the basis of science literacy: the ability to use scientific knowledge to accurately evaluate information and make decisions based on evidence.
As a chemistry education researcher, I have been working since 2019 with my colleague Sonia Underwood to learn more about how chemistry students integrate and apply their knowledge to other scientific disciplines.
In our most recent study, we investigated how well college students could use their chemistry knowledge to explain real-world biological phenomena. We did this by having them do activities designed to make those cross-disciplinary connections.
We found that even though most of the students had not been given similar opportunities that would prepare them to make those links, activities like these can help – if they are made part of the curriculum.
Three-dimensional learning
A large body of research shows that traditional science education, for both science majors and non-majors, doesn’t do a good job of teaching science students how to apply their scientific knowledge and explain things that they may not have learned about directly.
With that in mind, we developed a series of cross-disciplinary activities guided by a framework called “three-dimensional learning.”
In short, three-dimensional learning, known as 3DL, emphasizes that the teaching, learning and assessing of college students should involve the use of fundamental ideas within a discipline. It should also involve tools and rules that support students in making connections within and between disciplines. Finally, it should engage students in the use of their knowledge. The framework was developed on the basis of how people learn as a way to help all students gain a deep understanding of science.
We did this in collaboration with Rebecca L. Matz, an expert in science, technology, engineering and math education. Then we took these activities to the classroom.
Making scientific connections
To begin, we interviewed 28 first-year college students majoring in the sciences or engineering. All were enrolled in both introductory chemistry and biology courses. We asked them to identify connections between the content of these courses and what they believed to be the take-home messages from each course….