Specialized training programs using sensory augmentation devices could prevent astronauts from getting disoriented in space

When landing on the surface of the Moon, astronauts can become spatially disoriented, which is when they lose sense of their orientation – they might not be able to tell which way is up. This disorientation can lead to fatal accidents.

Even on Earth, between 1993 and 2013, spatial disorientation led to the loss of 65 aircraft, US$2.32 billion of damages and 101 deaths in the U.S.

Could wearable technology augment the senses of astronauts, allowing them to overcome the limitations of their biological sensors? And what type of training could build a deeper bond between the astronaut and the wearable technology, so that astronauts would be able to rely on the technology when they can’t trust their own senses?

I am a research scientist in the Ashton Graybiel Spatial Orientation Lab at Brandeis University. With my collaborators, Alexander Panic, James Lackner and Paul DiZio, I study sensory augmentation and spatial disorientation, which is when astronauts and pilots lose the sense of which way they are oriented.

Spatial disorientation research may help astronauts in the future, and it can have applications for other fields, like vestibular disorders.

In a paper published in November 2023 in Frontiers in Physiology, we determined whether vibrotactors – small vibrating devices placed on the skin – could enhance the performance of participants put in a disorienting condition that mimicked spaceflight. We also studied what type of training could enhance the connection between the human and the device.

Vibrotactors communicate information through the touch receptors of the somatosensory system instead of the visual system. They have previously helped pilots flying helicopters and airplanes.

When pilots are disoriented, their visual system often gets overwhelmed with information. Vibrotactors can help because they send touch signals rather than visual signals.

Creating a spaceflight analog condition

For our first experiment, we wanted to figure out whether using vibrotactors would improve a particpant’s ability to stabilize themselves in a disorienting spaceflight condition.

We strapped participants into a multi-axis rotation device, which is a machine containing a chair that’s programmed to behave like an inverted pendulum. Like a pencil falling left or right as you try to balance it on your fingertip, the multi-axis rotation device tilts to the left or right. Participants used a joystick to try to balance themselves and keep the chair upright.

We blindfolded the participants, because spatial disorientation often occurs when pilots can’t see – like when they fly at night or through clouds.

On Earth, tiny organs in the inner ears called otoliths help people keep their balance by sensing how far the body is tilted away from an upright position, also called the gravitational vertical. In space and especially during gravitational transitions, such…

Access the original article

Subscribe
Don't miss the best news ! Subscribe to our free newsletter :