Deepfake audio has a tell – researchers use fluid dynamics to spot artificial imposter voices

Imagine the following scenario. A phone rings. An office worker answers it and hears his boss, in a panic, tell him that she forgot to transfer money to the new contractor before she left for the day and needs him to do it. She gives him the wire transfer information, and with the money transferred, the crisis has been averted.

The worker sits back in his chair, takes a deep breath, and watches as his boss walks in the door. The voice on the other end of the call was not his boss. In fact, it wasn’t even a human. The voice he heard was that of an audio deepfake, a machine-generated audio sample designed to sound exactly like his boss.

Attacks like this using recorded audio have already occurred, and conversational audio deepfakes might not be far off.

Deepfakes, both audio and video, have been possible only with the development of sophisticated machine learning technologies in recent years. Deepfakes have brought with them a new level of uncertainty around digital media. To detect deepfakes, many researchers have turned to analyzing visual artifacts – minute glitches and inconsistencies – found in video deepfakes.

This is not Morgan Freeman, but if you weren’t told that, how would you know?

Audio deepfakes potentially pose an even greater threat, because people often communicate verbally without video – for example, via phone calls, radio and voice recordings. These voice-only communications greatly expand the possibilities for attackers to use deepfakes.

To detect audio deepfakes, we and our research colleagues at the University of Florida have developed a technique that measures the acoustic and fluid dynamic differences between voice samples created organically by human speakers and those generated synthetically by computers.

Organic vs. synthetic voices

Humans vocalize by forcing air over the various structures of the vocal tract, including vocal folds, tongue and lips. By rearranging these structures, you alter the acoustical properties of your vocal tract, allowing you to create over 200 distinct sounds, or phonemes. However, human anatomy fundamentally limits the acoustic behavior of these different phonemes, resulting in a relatively small range of correct sounds for each.

How your vocal organs work.

In contrast, audio deepfakes are created by first allowing a computer to listen to audio recordings of a targeted victim speaker. Depending on the exact techniques used, the computer might need to listen to as little as 10 to 20 seconds of audio. This audio is used to extract key information about the unique aspects of the victim’s voice.

The attacker selects a phrase for the deepfake to speak and then, using a modified text-to-speech algorithm, generates an audio sample that sounds like the victim saying the selected phrase. This process of creating a single deepfaked…

Access the original article